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Abstract. We discuss the Luttinger Liquid behaviour of Large Radius Carbon Nanotube e.g. the Multi Wall
ones (MWNT), under the action of a transverse magnetic field B. Our results imply a reduction with B in
the value of the bulk critical exponent, αbulk, for the tunneling density of states, which is in agreement with
that observed in transport experiments. Then, the problem of transport through a Quantum Dot formed
by two intramolecular tunneling barriers along the MWNT, weakly coupled to Tomonaga-Luttinger liquids
is studied, including the action of a strong transverse magnetic field B. We predict the presence of some
peaks in the conductance G versus B, related to the magnetic flux quantization in the ballistic regime,
at a very low temperature T , and also at higher values of T , where the Luttinger behaviour dominates.
The temperature dependence of the maximum Gmax of the conductance peak according to the Sequential
Tunneling follows a power law, G ∝ T γe−1 with γe linearly dependent on the critical exponent, αend,
strongly reduced by B.

PACS. 05.60.Gg Quantum transport – 71.10.Pm Fermions in reduced dimensions – 73.63.-b Electronic
transport in nanoscale materials and structures – 71.20.Tx Fullerenes and related materials; intercalation
compounds

1 Introduction

In a recent paper [1] we discussed the transport through a
double barrier for interacting quasi one-dimensional elec-
trons in a Quantum Wire (QW), in the presence of a trans-
verse magnetic field. Here we want to extend the results
obtained there to an analogous device based on Large
Radius Carbon Nanotubes (LRCN), such as the Multi
Wall ones (MWNT). This aim is not trivial to pursue,
because of the geometry-dependent electronic properties
of the Carbon Nanotubes (CNs) and the effects of many
subbands crossing the Fermi level in LRCNs.

Transport in 1 Dimension — Electronic correlations
have been predicted to dominate the characteristic fea-
tures in quasi one dimensional (1D) interacting elec-
tron systems. This property, commonly referred to as
Tomonaga-Luttinger liquid (TLL) behaviour [2], has re-
cently moved into the focus of attention by physicists, also
because in recent years several electrical transport exper-
iments for a variety of 1D devices, such as semiconductor
quantum wires [3] (QWs) and carbon nanotubes (CNs) [4]
have shown this behaviour.

In a 1D electron liquid Landau quasiparticles are un-
stable and the low-energy excitations take the form of
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plasmons (collective electron-hole pair modes): this is
known as the breakdown of the Fermi liquid picture in
1D. The LL state has two main features: (i) the power-
law dependence of physical quantities, such as the tunnel-
ing density of states (TDOS), as a function of energy or
temperature; (ii) the spin-charge separation: an additional
electron in the LL decays into decoupled spin and charge
wave packets, with different velocities for charge and spin.
It follows that 1D electron liquid are characterized by the
power-law dependence of some physical quantities, as a
function of the energy or the temperature. Thus, the tun-
neling conductance G reflects the power law dependence
of the DOS in a small bias experiment [5]

G = dI/dV ∝ Tαbulk (1)

for eVb � kBT , where Vb is the bias voltage, T is the
temperature and kB is Boltzmann’s constant.

The power-law behaviour characterizes also the ther-
mal dependence of G when an impurity is present along
the 1D devices. The theoretical approach to the presence
of obstacles mixes two theories corresponding to the sin-
gle particle scattering (by a potential barrier VB(r)) and
the TLL theory of interacting electrons. The single parti-
cle scattering gives the transmission probability, |t|2, de-
pending in general on the single particle energy ε. Hence,
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following reference [6], the conductance, G, as a function
of the temperature and |t| can be obtained

G ∝ |t(ε, T )|2 ≡ |t(ε)|2T 2αend, (2)

where we introduced a second critical exponent, αend.
Intrinsic Quantum Dot — Experiments [7,8] show

transport through an intrinsic quantum dot (IQD) formed
by a double barrier within a 1D electron system, allow-
ing for the study of the resonant or sequential tunneling.
The linear conductance typically displays a sequence of
peaks, when the gate voltage, Vg, increases. Thus, also the
double-barrier problem has attracted a significant amount
of attention among theorists [9–16], in particular the case
of two identical, weakly scattering barriers at a distance d.
In general, the transmission is non-zero for particular val-
ues of the parameters corresponding to a momentum kF ,
such that cos(kF d/2) = 0. It follows that, although in a
1D electron system for repulsive interaction the conduc-
tance is suppressed at zero temperature by the presence
of one impurity (a 1D metal becomes a perfect insulator),
the presence of an IQD gives rise to some peaks in the
conductance at T = 0 corresponding to the perfect trans-
mission. This resonant scattering condition corresponds
to an average particle number between the two barriers of
the form ν+1/2, with integer ν, i.e. the “island” between
the two barriers is in a degenerate state. If interactions
between the electrons in the island are included, one can
recover the physics of the Coulomb blockade [5,17].

The power-law behaviour characterizes also the ther-
mal dependence of G in the presence of an IQD. A first
theory about the transport through an IQD is known as
uncorrelated sequential tunneling (UST), where an inco-
herent sequential tunneling is predicted. It follows the de-
pendence of the peaks of the conductance according to the
power law

Gmax ∝ Tαend−1.

Some experiments [7,8] showed transport through an
IQD formed by a double barrier within a Single Wall
CN (SWNT), allowing one to study the resonant or se-
quential tunneling. In order to explain the unconventional
power-law dependencies in the measured transport prop-
erties of a CN, a mechanism was proposed [7,12], namely,
correlated sequential tunneling (CST) through the island.
The temperature dependence of the maximum Gmax of
the conductance peak, according to the CST theory, yields
the power law behaviour

Gmax ∝ Tαend−end−1 = T 2αend−1. (3)

Recently a lot of theoretical work has been carried out on
the double impurity problem in TLL systems. In an inter-
mediate temperature range εc � kBT � ∆dot, where εc

is the Infra Red cut-off energy and ∆dot is the level spac-
ing of the dot, some authors [13,14] predict a behaviour
according to the UST, while others [16] find results in
agreement with the CST theory. In a recent paper [18]
the authors discussed how the critical exponent can de-
pend on the size of the dot and on the temperature, by
identifying three different regimes, i.e. the UST at low T ,

a Kirchoff regime at intermediate T (Gmax ∝ T 2αend) and
a third regime for T � ∆dot, with Gmax ∝ T−1. Thus, in
their calculations, obtained starting from spinless fermions
on the lattice model, no evidence of CST is present.

Multi Wall Carbon Nanotubes — An ideal Single Wall
CN (SWCN) is a hexagonal network of carbon atoms
(graphene sheet) that has been rolled up, in order to make
a cylinder with a radius about 1 nm and a length about
1 µm. The unique electronic properties of CNs are due to
their diameter and chiral angle (helicity) [19]. MWCNs,
instead, are made by several (typically 10) concentrically
arranged graphene sheets with a radius above 5 nm and
a length which ranges from 1 to some hundreds of µms.
The transport measurements carried out in MWNTs re-
flect usually the electronic properties of the outer layer, to
which the electrodes are attached. Thus, in what follows
we mainly discuss the LRCNs as a general class of CNs in-
cluding also MWNTs. In general the LRCNs are affected
by the presence of doping, impurities, or disorder, what
leads to the presence of a large number of subbands, N ,
at the Fermi level [20]. It follows that the critical expo-
nent has a different form, with respect to that calculated
in reference [1].

The bulk critical exponent can be calculated in several
different ways, e.g. see reference [21] where we obtained

αbulk ≈ 1
4N

(
KN +

1
KN

− 2
)
, (4)

where
1
KN

≈
√

1 +
NU0(qc, B)

(2πvF )
.

Here vF is the Fermi velocity, U0(p) corresponds to the
Fourier transform of the 1D electron-electron interaction
potential and qc = 2π/L is the infra-red natural cut-off
due to the length of the CN, L. For a strictly 1D system,
such as a CN in absence of magnetic field, U0(p) does not
depend on the momenta of the interacting electrons. In
general [22] we need to introduce two different couplings
for two different forward scattering processes (with a small
transferred momentum). The first term, g2, is obtained by
considering 2 scattered electrons with opposite momenta
(±kF ). The second term, g4, is obtained by considering
2 scattered electrons with (almost) equal momenta (k1 ∼
k2 ∼ kF ). It follows that

KN ≈
√

2πvF +N (g4 − g2) /2
2πvF +N (g4 + g2) /2

,

which corresponds to the previous formula when g2 = g4 =
U0(qc). As in reference [22], the presence of a magnetic
field gives g2 �= g4 because of the edge localization of the
currents with opposite chiralities, and we need the B de-
pendent values of g2 and g4.

The value of αbulk obtained in reference [21] is in agree-
ment with the one obtained in reference [23], where also
the end critical exponent was obtained as

αend ≈ 1
2N

(
1
KN

− 1
)
. (5)
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Power law in MWNTs — One of the most significant ob-
servations made in the MWNTs has been the power-law
behavior of the tunneling conductance as a function of the
temperature or the bias voltage. The measurements car-
ried out in MWNTs displayed a power-law behavior of the
tunneling conductance, that gives a measure of the low-
energy density of states. Also if the power law behaviour
in the temperature dependence of G usually characterizes
a small range of temperature (from some −K up to some
tens, rarely up to the room T ), this behaviour allowed
the measurements of the critical exponents αBulk rang-
ing, in MWNTs, from 0.24 to 0.37 [24]. These values are,
on the average, below those measured in the single-walled
nanotubes, which are typically about 0.35 [25]. A similar
behaviour was satisfactorily explained [21] in terms of the
number of subbands by applying equation (4).

CNs under a transverse magnetic field — The effects of
a transverse magnetic field B, acting on CNs were also in-
vestigated in past years. Theoretically, it is predicted that
a perpendicular B field modifies the DOS of a CN [26],
leading to the Landau level formation. This effect was ob-
served in a MWNT single-electron transistor [27]. In a
recent letter Kanda et al. [28] examined the dependence
of G on perpendicular B fields in MWNTs. They found
that, in most cases, G is smaller for higher magnetic fields,
while αBulk is reduced by a factor 1/3 to 1/10, for B rang-
ing from 0 to 4 T. Recently we discussed the effects of
a transverse magnetic field in QWs [1] and large radius
CNs [29]. The presence of B �= 0 produces the rescaling
of all repulsive terms of the interaction between electrons,
with a strong reduction of the backward scattering, due
to the edge localization of the electrons. Our results im-
ply a variation with B in the value of αBulk, which is in
fair agreement with the value observed in transport ex-
periments [28].

Impurities, buckles and Intrinsic Quantum Dots —
The magnetically induced localization of the electrons
should have some interesting effects also on the backward
scattering, owing to the presence of one or more obstacles
along the LRCN, and hence on the corresponding con-
ductance, G [1]. Thus, the main focus of our paper is the
analysis of the presence of two barriers along a LRCN, at
a fixed distance d. A similar device was realized by the
manipulating individual nanotubes with an atomic force
microscope which allowed one to obtain intratube buck-
les acting as tunneling barriers [7]. The SWNTs with two
intramolecular buckles have been reported to behave as
room-temperature single electron transistors. The linear
conductance typically displays a sequence of peaks when
the gate voltage, Vg, increases. The one-dimensional na-
ture of the correlated electrons is responsible for the differ-
ences, with respect to the usual quantum Coulomb block-
ade theory.

We predict that, in the presence of a transverse mag-
netic field, a LRCN should show some oscillations in the
conductance as a function of the magnetic field, analogous
to those discussed in reference [1].

Summary — In this paper we want to discuss the issues
mentioned above. In order to do so, we follow the same
line of reasoning of our previous paper [1]

In Section 2 we introduce a theoretical model which
can describe the CN under the effect of a transverse mag-
netic field, and we discuss the properties of the interaction
starting from the unscreened long range Coulomb interac-
tion in two dimensions.

In Section 3 we evaluate the bulk and end critical
exponents. Then we discuss how they are affected by
an increasing transverse magnetic field. We remark that
αbulk characterizes the discussed power-law behavior of
the TDOS, while (αend) characterizes the temperature de-
pendence of Gmax, in both the UST and the CST regime.
Finally, we discuss the presence of an IQD and the mag-
netic field dependent oscillations in the conductance.

2 Model and interaction

Single particle — Starting from the known bandstructure
of graphite, after the definition of the boundary condition
(i.e. the wrapping vector −→w = (mw, nw)), it is easy to
calculate the bandstructure of a CN. For an armchair CN
(mw = nw) we obtain that the energy vanishes for two dif-
ferent values of the longitudinal momentum ε0(±Ks) = 0.
After fixing the angular momentum along the y direc-
tion to be m�, the dispersion law ε0(m, k) is usually
taken to behave linearly, so that we can approximate it
as ε0(m, k) ≈ ε0(m,Ks) + vF |k − Ks|, where we intro-
duce a Fermi velocity vF (about 106 m/s for CNs). In
general, we can define an approximated one-dimensional
bandstructure for momenta near ±Ks = ±(2π)/(3a0)

ε0(m,−→w , k) ≈ ±vF �

R√(
mw − nw + 3m

3

)2

+R2 (k ±Ks)
2 (6)

where R ≈ Nb

√
3a/(2π) is the tube radius (about 5 nm for

MWNTs) and a denotes the honeycomb lattice constant
(a/

√
3 = a0 = 1.42 Å).

For a metallic CN (e.g. the armchair one with
mw = nw) we obtain that the energy vanishes for two dif-
ferent values of the longitudinal momentum ε0(±Ks) = 0.
The dispersion law ε0(m, k) in the case of undoped metal-
lic nanotubes behaves quite linearly near the crossing
values ±Ks. The fact of having four low-energy linear
branches at the Fermi level introduces a number of dif-
ferent scattering channels, depending on the location of
the electron modes near the Fermi points.

Starting from equation (6) we can develop a Dirac-like
theory for CNs corresponding to the Hamiltonian

HD = vF

[
α̂(L̂z) + β̂π̂y

]
, (7)

with a solution in the spinorial form ψ̂ where

α̂ = α

(
0 i
−i 0

)
β̂ =

(
0 1
1 0

)
Ψ̂ =

(
ψ↑
ψ↓

)
. (8)
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Here π̂y = p̂y ± �Ks, and α = 1
R2 , and equation (7) can

be compared with the one obtained in reference [30].
For a metallic CN, such as the armchair one, the prob-

lem in equation (7) has periodic boundary conditions, i.e.
Ψ(ϕ+2π, y) = Ψ(ϕ); it follows that a factor eimϕ appears
in the wavefunction. For semiconducting CNs (mw �= nw)
we have to define quasiperiodic boundary conditions, i.e.
Ψ(ϕ + 2π, y) = ωΨ(ϕ) [30] corresponding to a factor
ei(m+ mw−nw

3 ϕ) in the wavefunction (m0 = mw − nw).
A cylindrical carbon nanotube, with the axis along the

y direction and B along z, corresponds to

HD = vF

[
α̂(L̂z) + β̂

(
π̂y − e

c
A
)]
, (9)

where we choose the gauge so that the system has a sym-
metry along the ŷ direction,

A = (0, Bx, 0) = (0, BR cos(ϕ), 0),

and we introduce the cyclotron frequency ωc = eB
mec and

the magnetic length �ω =
√

�/(mωc).
It is customary to discuss the results in terms of two

parameters, one representing the energy scale following
from equation (6)

∆0 =
�vF

R
, (10)

and the second one being the scale of the magnetic field

ν ≡ πR2

2π�2ω
=
πR2B

Φ0
where Φ0 =

hc

e
. (11)

Here we can calculate the effects of the magnetic field
by diagonalizing equation (9) after introducing the trial
functions,

ψ̃s,m,k(ϕ, y) = Nei(ky+(m+m0)ϕ)

× (αs + βs sin(ϕ) + γs cos(ϕ))) . (12)

Results are reported in Figure 1 for different CNs and
values of the magnetic field.

From the expression of |Ψm,±k(ϕ, y)|2 we deduce a kind
of “edge localization” of the opposite current, analogous
to the one obtained for the QW [1], also for CNs.

Following the calculations reported in reference [30] for
a metallic CN we can easily calculate the linear dispersion
relation changes near the band center ε = 0. Thus the
magnetic field-dependent energy can be written, near the
Fermi points k ∼ Ks, in terms of ν as

ε(|k −Ks|) = ±�|k −Ks|
(

vF

I0(4ν)

)
. (13)

This describes a reduction of the Fermi velocity �
−1dε/dk

near ε = 0 by a factor I0(4ν).
Hence, the magnetic field-dependent Fermi wavevector

follows

kF (εF , ν, 0) ≈ Ks +
(
εF

�vF

)
I0(4ν),

Fig. 1. In the x-axis the wavevector in unit (ky − Ks)R
(πyR/�). (Top) Bandstructure of a non-metallic CN with (red
lines) and without (black dashed lines) the transverse magnetic
field (ν = 0.5). The main consequence of B is the reduction of
the semiconducting gap. (Middle and bottom) Bandstructure
of a metallic CN with (red lines) and without (black dashed
lines) the transverse magnetic field. The main consequence of
B at intermediate fields is the rescaling of the Fermi velocity,
while for quite strong fields a flat zone appears near πy = 0.
We know that the magnetic parameter ν ≈ 0.2 for B ∼ 5 T
and R ≈ 50 nm [31].

where the second term in the r.h.s. depends on B as

kF = Ks ± k0 + k(B) ≈ Ks ± k0

× (1 + 4ν2 + ...) → k(B) ∼ 4k0ν
2,

where k0 = ( εF

�vF
).

Electron-electron interaction — In order to analyze
in detail the role of the electron-electron interaction, we
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have to point out that quasi 1D devices have low-energy
branches, at the Fermi level, which introduce a number of
different scattering channels, depending on the location of
the electron modes near the Fermi points. It has been often
discussed that processes which change the chirality of the
modes, as well as processes with large momentum-transfer
(known as backscattering and Umklapp processes), are
largely subdominant, with respect to those between cur-
rents of like chirality (known as forward scattering pro-
cesses) [32–34]. This hierarchy of the couplings character-
izes the Luttinger regime. However, in some special cases
the processes neglected here can be quite relevant, also
by giving rise to a breakdown of the Luttinger Liquid be-
haviour [35].

Now, following Egger and Gogolin [34], we introduce
the unscreened Coulomb interaction in two dimensions

U(r − r′) =
c0√

(y − y′)2 + 4R2 sin2(ϕ−ϕ′
2 )

. (14)

Then, we can calculate U0(q, ωc) starting from the eigen-
functions Ψ̃0,kF (ϕ, y) and the potential in equation (14).
We focus our attention on the forward scattering (FS)
terms. We can obtain g2, FS between opposite branches,
corresponding to the interaction between electrons with
opposite momenta, ±kF , with a small momentum trans-
fer ∼qc. The strength of this term reads

g2 = U0(qc, B, kF ,−kF )

=
c0

N2(ν)

[
K0

(
qcR

2

)
I0

(
qcR

2

)

+u2(ν)K1

(
qcR

2

)
I1

(
qcR

2

)]
,

where Kn(q) denotes the modified Bessel function of the
second kind, In(q) is the modified Bessel function of the
first kind, While N2 and u2 are functions of the transverse
magnetic field, as we discuss in appendix. Analogously

g4 = U0(qc, B, kF , kF )

=
c0

N4(ν)

[
K0

(
qcR

2

)
I0

(
qcR

2

)

+u4(ν)K1

(
qcR

2

)
I1

(
qcR

2

)]
.

3 Results

The bulk and the end critical exponents — The first re-
sult of this paper concerns the dependence of the critical
exponents on the magnetic field, in large radius CNs. By
introducing into equation (4) the calculated values of g2
and g4, it follows that the bulk critical exponent is re-
duced by the presence of a magnetic field, as we show in
Figure 2.

This prediction can be extended to αend, calculated
following equation (5), as we show in Figure 2. Hence, it
follows that the exponent γe − 1 can cross from positive
to negative values, when the magnetic field increases.
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Fig. 2. Critical exponents versus the magnetic field dependent
parameter, ν, for a large radius CN: αbulk is calculated follow-
ing equation (4), αend is calculated following equation (5). The
magnetic field rescales the values of the Fermi velocity and the
strength of electron-electron interaction. It follows that the ef-
fects of a transverse magnetic field also involve the value of K.
Thus, we predict a reduction of the critical exponents αbulk

and αend, yielding magnetic field-dependent exponents for the
power law behaviour of the conductance.

The experimental data about SWNT [7] gives, for
vanishing magnetic field, K1 ≈ 0.26, αBulk ≈ 0.27 and
αend ≈ 0.72.

For a MWNT we consider Ns ∼ 5 [28,38] so that K5 ≈
0.1, αBulk ≈ 0.2 and αend ≈ 0.4–0.5.

The intrinsic Quantum Dot — When there are some
obstacles to the free path of the electrons along a 1D de-
vice, a scattering potential has to be introduced in the
theoretical model. The presence of two barriers along a
CN [7] at a distance d can be represented by a potential

VB(y) = UB

(
f

(
y +

d

2

)
+ f

(
y − d

2

))
,

where f(y) is a square barrier function, a Dirac Delta func-
tion or any other function localized near y = 0.

In order to discuss the presence of magnetic field-
dependent oscillations we analyze the transmission in the
presence of a magnetic field, t(εF , B), computed for non-
interacting electrons, by identifying the off-resonance con-
dition (|t| = tmin), where electrons are strongly backscat-
tered by the barriers, and the on-resonance condition
(|t| = tmax), where the scattering at low temperatures
can be negligible.

Hence, as shown in Figure 3 (top), where we report
the transmission T = |t|2 versus ν for the lowest subband,
a magnetic field-dependent transmission follows; thus, a
magnetic dependence of the peaks in the transmission
is shown, which exhibits a magnetically tuned transport
through the CN. In particular, assuming that there are
two identical, weakly scattering barriers at a distance d,
the transmission, computed for non-interacting electrons,
is non-zero for particular values of kF , i.e. those satisy-
ing to the condition cos(kF d) ≈ 0. In addition, as it is
known (see e.g. Ref. [5]), the system can exhibit a perfect
resonant transmission (see Fig. 3, top).
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Fig. 3. Transmission (T ) of the lowest subband (m = 0) as
a function of the magnetic field. We use of a double square
barrier model, for the IQD. We observe the appearing of reso-
nance peaks, as a function of the magnetic field. The transmis-
sion probability was calculated by writing the wavefunctions in
each region of the axis y and by imposing the continuity equa-
tions at the potential energy discontinuity lines. In the limit of
adiabatic transport, thanks to an appropriate projection, the
problem of finding the transmission and reflection coefficients
can be reduced to an algebraic one. We know that, for quasi
one dimensional electron systems, our approach gives results in
good agreement with the ones obtained by using some more re-
fined methods, such as the Lippman-Schwinger scattering the-
ory, also in the presence of a magnetic field. The transmission
is shown for a non-interacting electron system (top), and is
sketched also for an interacting one (bottom), where t is mod-
ified by the scaling due to the electron-electron repulsion. The
positions of the peaks correspond to those obtained from the
condition cos(kF d) ≈ 0, while 0 ≤ |t00| ≤ 1, because of the
symmetry of the scattering potential.

We consider an IQD with d ≈ 250 nm in a CN of
R ≈ 5 nm. Thus, starting from the electrons in the mid-
dle of the bandgap, i.e. εF ∼ vF �/(2R) k(B) ≈ ν2/(2R),
we have to observe about 4 peaks (the number of reso-
nances with ν ≤ 1 is np = d/(4πR)) in the transmission
coefficient, when growing the magnetic field from ν = 0 to
ν = 1.

The presence of these oscillations could be seen in
MWNTs or SWNTs of large radius, while, in the case
of a SWNTs with radius R ≈ 1 nm, the values of the
magnetic field are unrealistic. In these systems the effects
of the electron-electron interaction cannot be neglected,
and they can affect the width and the line shape of the
resonances also at zero temperature [5]. It follows that the
resonances in the transmission for interacting electrons are
of zero width (w = 0) and unitary height (Gmax = e2/h),
as in Figure 3 (bottom).

In analogy to our previous paper [1], we can discuss the
different explanations of the resonance conditions. From a
theoretical point of view, the on-resonance condition can
be seen in two different ways: in some papers [36], where
the ballistic transport in QWs was analyzed, it was dis-
cussed the presence of these peaks as providing evidence

of an Aharonov Bohm effect, while in the TLL theory the
resonance peaks are put in correspondence to the presence
of an average particle number between the two barriers of
the form ν + 1/2, with integer ν: thus, we suppose that
each electron in the Quantum Dot carries a quantum of
magnetic flux.

Temperature behaviour — As it is known, the presence
of the peaks in the transmission has to be observable not
only at very low temperatures. The temperature does not
affect the values of B corresponding to the conductance
peaks, while their largest value,Gmax, follows a power law,
according to the Sequential Tunneling theory. Thus, one
has Gmax ∝ T γe−1, with γe depending on the tunneling
mechanism. This point deserves a brief discussion.

In this paper we take into account a short nanotube
section that is created by inducing (e.g. by an atomic force
microscope) local barriers into a large radius CN. In this
case the condition, ∆dot � KBT discussed in reference [7]
is confirmed in a large range of temperatures around TR

(∆dot/KB ∼ 104 ◦K, while εc/KB ∼ 1 ◦K).
Now we could discuss the two cases, by assuming the

validity of either the UST or the CST. In any case, we
want to point out that in both theories, it appears the
critical exponent αend, which has to be rescaled with the
growing of the magnetic field. It is also known that, when
the temperature T is greater than 0, the width of the peaks
increases proportionally to T .

The intersubbands processes — The role of the many
subbands (Ns) which cross the Fermi level should to be
taken into account by introducing the matrix tn,m includ-
ing all the intersubband scattering processes. However we
can suppose |tn,m| � |tn,n|, corresponding to the adi-
abatic regime, because the intersubbands processes, i.e.
processes that involve two different subbands, are largely
subdominant, with respect to processes involving the same
subband. It follows that the conductance G results pro-
portional to the sum of the |tn,n|. Thus, the peaks cor-
responding to the on-resonance condition, due to the Ns

subbands, have to be superposed, in order to calculate the
zero temperature conductance. However, the contribution
to the oscillations due to the subbands different from the
lowest one can be neglected, because the shift in k(B) is
quite smaller for higher subbands, as we show in Figure 1.

4 Conclusions

In this paper we extended to large radius CNs the for-
malism introduced for a QW in a previous paper. We
showed how the presence of a magnetic field modifies the
role played by both the electron-electron interaction and
the presence of obstacles, in CNs of large radius.

The first prediction that comes from our study is that
there should be a significant reduction of the critical ex-
ponents, as the magnetic field is increased, in agreement
with the results found for QWs.

Our second prediction concerns the presence of some
peaks in the beghaviour of the small bias conductance,
versus the magnetic field.
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U(y − y′) ≈ c0

∫ π

−π

dϕ

∫ π

−π

dϕ′
√

1

(y − y′)2 + 4R2 sin2(ϕ−ϕ′
2

)
Ψ†

m,kF (ϕ, y)Ψm,kF (ϕ, y)Ψn,−kF (ϕ′, y′)Ψ†
n,−kF (ϕ′, y′)

=
c0

4π2

∫ π

−π

dϕ

∫ π

−π

dϕ′
√

1

(y − y′)2 + 4R2 sin2(ϕ−ϕ′
2

)

(
η+ + θ+ cos(ϕ′) + ξ+ cos2(ϕ′)

N+

)(
η− + θ− cos(ϕ) + ξ− cos2(ϕ)

N−

)

≈ c0

4π2

√
1

(y − y′)2

∫ π

−π

dϕ

∫ π

−π

dϕ′
( ∞∑

k

(−1)k Γ ( 1
2

+ k)√
π Γ (1 + k)

(
2R

y − y′

)2 k

sin2 k

(
ϕ − ϕ′

2

))

×
(

(η+η− + (η+θ− + η−θ+) cos(ϕ) cos(ϕ′) + (ξ+ cos2(ϕ) + ξ− cos2(ϕ′)))
(N+N−)

)

=
2c0

N+N−

√
1

(y − y′)2

∞∑
n

(−1)n Γ ( 1
2

+ n)√
π Γ (1 + n)

(
2R

y − y′

)2 n

×
((

η+η+ +
ξ+ + ξ−

2

)
4π3/2Γ (n + 1/2)

Γ (n + 1)
+ (η+θ− + η−θ+)

2π3/2nΓ (n + 1/2)

Γ (n + 2)

)
. (A.1)

It would be of considerable importance to test this
behaviour in experiments carried out using different sam-
ples, in various temperature regimes. This experimental
test can be also useful, in order to solve a controversial
question about the exponent that characterizes the power
law dependence of G(T ).

We want to remark that our approach is based on the
idea that electrons tunnel coherently through an obstacle,
represented by a double barrier, that can be assumed only
as a strong barrier.

Our results could be surely affected by the use of a
model, where the electrons weakly interact with the lat-
tice, while the buckles are represented by strong potential
barriers. This approximation holds in the opposite regime,
with respect to the model of spinless fermions on the lat-
tice used in reference [18]. However, we believe that our
model can well reproduce some experimental results while,
for what concerns the different regimes, we want also to
suggest that, when the temperature decreases, different
approaches could be needed, as we discussed in some of
our previous papers [37,38].

Appendix A: From the 2D Coulomb potential
to a 1D model

First we introduce the wavefunctions Ψ for a metallic CN
as spinors constructed starting from the functions

ψ̃s,m,k(ϕ, y) =
ei(ky+imϕ)

N
(αs + βs sin(ϕ) + γs cos(ϕ))) ,

it follows

Ψ†Ψ =

( ∑
s=↑,↓

((α2
s + β2

s) + 2(αsγs) cos(ϕ)

+ (γ2
s − β2

s) cos(ϕ)2 + [2(αsβs) sin(ϕ)

+ (βsγs) sin(2ϕ)]))

)/⎛
⎝2π2L

∑
s=↑,↓

(2α2
s + β2

s + γ2
s )

⎞
⎠ ,

and we define η± =
∑

s=↑,↓(α
2
s + β2

s), θ± =∑
s=↑,↓ 2(αsγs), ξ± =

∑
s=↑,↓(γ

2
s − β2

s ) and N± =∑
s=↑,↓(2α

2
s +β2

s +γ2
s), where ± corresponds to the values

of k = ±kF .
Now we introduce the Coulomb interaction and expand

this function in terms of R/|y − y′| as

U(r− r′) =
c0

|y − y′|

( ∞∑
k

(−1)k Γ(1
2 + k)√

πΓ(1 + k)

×
(

2R
y − y′

)2 k

sin2 k

(
ϕ− ϕ′

2

))
.

The Forward scattering between opposite branches (±) is
obtained as

see equation (A.1) above.

Thus we introduce u0 = η+η−,u1 = (η+θ− + η−θ+) and
u2 = (ξ+ + ξ−) so that we obtain:

U(y − y′) = 2
c0

(N+N−)

√
1

(y − y′)2

×
{(

u0 +
u1

2

)
K

(
−
(

2R
y − y′

)2
)

+u2

(
π

8 2
F1

(
3
2
,
3
2
; 2,−

(
2R
y − y′

)2
)[

2R
y − y′

]2)}

(A.2)

whereKE(x) gives the complete elliptic integral of the first
kind while 2F1(a, b, c, z) is the hypergeometric function.

The Fourier Transform gives the U0(q) as

U0(q) =
c0√

2 (N+N−)2

[(
u0 +

u1

2

)
K0

(
qR

2

)
I0

(
qR

2

)

+
u2

2
K1

(
qR

2

)
I1

(
qR

2

)]
, (A.3)
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with Kn(q) which gives the modified Bessel function of
the second kind and In(q) gives gives the modified Bessel
function of the first kind.

In order to calculate g4 we have to define u0 = η2
+,u1 =

2η+θ+ and u2 = 2ξ+ and replace in the equations above.
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